Markscheme

November 2017

Physics

Standard level

Paper 3

This markscheme is the property of the International
Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

Question			Answers	Notes	Total
1.	a		single smooth curve passing through all data points \checkmark		1
1.	b	i	tangent drawn at $80^{\circ} \mathrm{C} \checkmark$		3
			gradient values separated by minimum of $20^{\circ} \mathrm{C} \checkmark$	Do not accept tangent unless＂ruler＂straight． Tangent line must be touching the curve drawn for MP1 to be awarded．	
			9.0×10^{-4} « $\mathrm{kJ} \mathrm{kg}^{-1} \mathrm{~K}^{-2}$ 》 \checkmark	Accept values between 7.0×10^{-4} and 10×10^{-4} ． Accept working in J，giving 0.7 to 1.0	
1.	b	ii	$\mathrm{kJ} \mathrm{kg}^{-1} \mathrm{~K}^{-2} \checkmark$	Accept J instead of kJ Accept ${ }^{\circ} \mathrm{C}^{-2}$ instead of K^{-2} Accept ${ }^{\circ} \mathrm{C}^{-1} \mathrm{~K}^{-1}$ instead of K^{-2} Accept C for ${ }^{\circ} \mathrm{C}$	1
1.	c	i	«0．1×4．198×10＝» 4.198 «kJ》 or 4198 «J》	Accept values between 4.19 and 4.21	1
1.	c	ii	percentage uncertainty in $\Delta T=10 \% \checkmark$	Allow fractional uncertainties in MP1 and MP2	
			«2\%+5\%+10\%=»17\%		
			absolute uncertainty $=$ « $0.17 \times 4.198=» 0.7$ « kJ » therefore 2 sig figs OR absolute uncertainty to more than 1 sig fig and consistent final answer		3

| Question | | Answers | Notes | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2. | \mathbf{a} | | « $\varepsilon=I R+I r »$
 $\frac{1}{I}=\frac{R}{\varepsilon}+\frac{r}{\varepsilon} \checkmark$
 identifies equation with $y=m x+c \checkmark$
 «hence $m=\frac{1}{\varepsilon} »$ | No mark for stating data booklet equation |

| 3. | \mathbf{a} | | «to reduce» random errors \checkmark
 to reduce absolute uncertainty \checkmark
 to improve precision \checkmark | OWTTE
 Do not accept just "to find an average" or just "reduce error"
 Ignore any mention to accuracy |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3. | \mathbf{b} | as the literature value is within the range «9.7-11.1»
 hence it is accurate \checkmark | OWTTE | |

Section B

Option A - Relativity

| Question | | Answers | Notal | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4. | | | light is an EM wave \checkmark
 speed of light is independent of the source/observer \checkmark | |

5.	a		a co-ordinate system in which measurements «of distance and time» can be made	Ignore any mention to inertial reference frame.	1
5.	b		closing speed $=\subset \checkmark$		2
			2 «S» \checkmark		
5.	C		u and v are velocities with respect to the same frame of reference/Earth AND u^{\prime} the relative velocity \checkmark	Accept 0.4c and 0.6c for u and v	1
5.	d		$\frac{-0.4-0.6}{1+0.24} \checkmark$		2
			«-»0.81c \checkmark		
5.	e	i	$\gamma=1.25 \checkmark$		2
			so the time is $t=1.6$ «S 》		
5.	e	ii	gamma is smaller for $B \checkmark$		2
			so time is greater than for $A \checkmark$		

Question		Answers	Notes	Total
6.	a	the length of an object in its rest frame OR the length of an object measured when at rest relative to the observer \checkmark		1
6.	b	world lines for front and back of tunnel parallel to ct axis world lines for front and back of train \checkmark which are parallel to $c t^{\prime}$ axis \checkmark		3
6.	C	$\begin{aligned} & \text { realizes that gamma }=1.25 \checkmark \\ & 0.6 c \checkmark \end{aligned}$		2

(continued...)
(Question 6 continued)

| Question | | Answers |
| :--- | :--- | :--- | :--- | :--- |
| 6. | \mathbf{d} | |
| indicates the two simultaneous events for t frame \checkmark | | |
| marks on the diagram the different times «for both spacetime points» on | | |
| the $c t^{\prime}$ axis «shown as Δt^{\prime} on each diagram» \checkmark | | |

Option B — Engineering physics

| Question | | Answers | Notes | Total | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7. | a | | weight, normal reaction and friction in correct direction \checkmark
 correct points of application for at least two correct forces \checkmark | Labelled on diagram. | |

(continued...)
(Question 7 continued)

Question		Answers	Notes	Total
7.	b	ALTERNATIVE 1 $m a=m g \sin \theta-F_{f} \checkmark$ $I \alpha=F_{f} \times r$ OR $m r \alpha=F_{f} \checkmark$ $\alpha=\frac{a}{r} \checkmark$ $m a=m g \sin \theta-m r \frac{a}{r} \rightarrow 2 a=g \sin \theta$ ALTERNATIVE 2 $m g h=\frac{1}{2} I \omega^{2}+\frac{1}{2} m v^{2}$ substituting $\omega=\frac{v}{r}$ «giving $v=\sqrt{g h}$ » \downarrow correct use of a kinematic equation \checkmark use of trigonometry to relate displacement and height «s $=h \sin \theta » \checkmark$	Can be in any order No mark for re-writing given answer Accept answers using the parallel axis theorem (with $I=2 m r^{2}$) only if clear and explicit mention that the only torque is from the weight Answer given look for correct working For alternative 2, MP3 and MP4 can only be awarded if the previous marking points are present	4
7.	c	1.68 « $\mathrm{ms}^{-2} » \checkmark$		1

(Question 7 continued)

Question		Answers	Notes	Total
7.	d	ALTERNATIVE 1 $\begin{aligned} & N=m g \cos \theta \\ & F_{\mathrm{f}} \leq \mu m g \cos \theta \end{aligned}$ ALTERNATIVE 2 $F_{\mathrm{f}}=m a$ «from 7(b)» \checkmark so $F_{\mathrm{f}}=\frac{m g \sin \theta}{2} \checkmark$		2
7.	e	$\begin{aligned} & F_{\mathrm{f}}=\mu m g \cos \theta \\ & \frac{m g \sin \theta}{2}=m g \sin \theta-\mu m g \cos \theta \end{aligned}$ OR $m g \frac{\sin \theta}{2}=\mu m g \cos \theta$ algebraic manipulation to reach $\tan \theta=2 \mu \checkmark$		3

(continued...)
(Question 8 continued)

Question		Answers	Notes	Total
8.	d	area enclosed \checkmark work is done by the gas during expansion OR work is done on the gas during compression \checkmark the area under the expansion is greater than the area under the compression \checkmark	2 max	

Option C - Imaging

Question			Answers	Notes	Total
9.	a	i	with object placed between lens and focus two rays correctly drawn \checkmark	Backwards extrapolation of refracted rays can be dashes or solid lines Do not penalize extrapolated rays which would meet beyond the edge of page Image need not be shown	2
9.	a	ii	«just less than» the focal length or $f \checkmark$		1
9.	b	i	$\begin{aligned} & \frac{1}{10}+\frac{1}{v}=\frac{1}{2} \checkmark \\ & v=2.5 « \mathrm{~m} » \end{aligned}$		2
9.	b	ii	real, smaller, inverted \checkmark	All three required - OWTTE	1

(Question 9 continued)

Question			Answers	Notes	Total
9.	c	i	two correct rays coming from Q \checkmark	Allow any two of the three conventional rays.	
			locating \mathbf{Q}^{\prime} below the main axis $\boldsymbol{A N D}$ beyond f to the right of lens AND at intercept of rays \checkmark		2
9.	c	ii	$\frac{h}{h^{\prime}}=\frac{-x}{x^{\prime}}$ OR 2.5 or 10×0.3 «m» \checkmark $\text { «-» } 0.075 \text { «m» } \checkmark$		2
9.	C	iii	towards Q \downarrow	Accept move to the left	1
9.	C	iv	spherical aberration \checkmark		
			top of the shape «R» is far from axis so no paraxial rays \checkmark	For MP2 accept rays far from the centre converge at different points	2

Option D - Astrophysics

Question			Answers	Notes	Total
11.	a	i	«nuclear» fusion \checkmark	Do not accept "burning"	1
11.	a	ii	brightness depends on luminosity and distance/ $b=\frac{L}{4 \pi d^{2}} \checkmark$ Vega is much further away but has a larger luminosity \checkmark	Accept answer in terms of Jupiter for MP2	2
11.	b	i	a group of stars forming a pattern on the sky AND not necessarily close in distance to each other	OWTTE	1
11.	b	ii	the star's position is observed at two times, six months apart, relative to distant stars \checkmark parallax angle is half the angle of shift \checkmark 2 postions of Earth 6 months apart	Answers may be given in diagram form, so allow the marking points if clearly drawn	2

(continued...)
(Question 11 continued)

Question		Answers	Notes	Total	
11.	b	iii	$\frac{1}{0.13}=7.7$ «pc» \checkmark so $d=7.7 \times 3.26=25.1 « l y » ~$		

(continued...)
(Question 12 continued)

Question			Answers	Notes	Total
12.	d	i	$\begin{aligned} & \left(\frac{L_{\text {SiriusB }}}{L_{\text {Sun }}}\right)=0.025 \checkmark \\ & r_{\text {Sirius }}=\text { « } \sqrt{0.025 \times\left(\frac{5800}{25000}\right)^{4}}=» 0.0085 r_{\text {Sun }} \checkmark \end{aligned}$		2
12.	d	ii	white dwarf \checkmark		1
12.	e	i	Sirius A on the main sequence above and to the left of the Sun AND Sirius B on white dwarf area as shown \checkmark	Both positions must be labelled Allow the position anywhere within the limits shown.	1

(continued...)
(Question 12 continued)

Question			Answers	Notes	Total
12.	e	ii	arrow goes up and right and then loops to white dwarf area		1

| 13. | a | galaxies are moving away
 OR
 space «between galaxies» is expanding \checkmark | Do not accept just red-shift |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 13. | b | « $\frac{\Delta \lambda}{\lambda}=» \frac{1.04}{115}=\frac{v}{c} \checkmark$
 $0.009 c \checkmark$ | Accept 2.7×10^{6} «m $s^{-1} »$
 Award $[0]$ if 116 is used for λ |

